NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

penthouses cuộc chiến thượng lưu 3 tập 13 | free casino slot machines | gold club slot machines | slot machine casino online | bonus member baru slot | progressive slot games | dự đoán xổ số an giang | top rbk | slot machine bonus | casino web | tivoli casino | one piece zing me | slot machine casino games | dự đoán xổ số quảng ngãi thần tài | xổ số đồng nai ngày 22 tháng 3 | 2 số cuối giải đặc biệt miền bắc | free mobile slots | online slots pay by phone | poipet resort casino | paradise found slot | talking stick resort and casino | my play tren zing me | trang casino | first deposit bonus slots | khu cau keo net | types of casino games | những bài hát karaoke sôi nổi | james bond 007 casino royale | bói bài tây 52 la | co up sanh rong | hang 2 duc | vnrom | nya slots | slot machine template free | nhận code gà hành miễn phí 2017 | xóa trang trống trong word | casinos in washington | fabulous slots | halloween fortune slot | đặt cược trái tim |