NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

tổ chức scp | thống kê giải đặc biệt theo tuần tháng năm | sodo casino 68 | xsmn 21 11 2022 | white rabbit slot free play | golden goddess slots | hyper casino willkommensbonus | how to win on penny slots | bị đứt tay chảy máu đánh con gì | doraemon tập dài mới | slot attendant job description for resume | thống kê kqxsmb theo tổng | jogos de slots online | casino hotel | cherry love slot machine | james bond casino royal | kqxs daklak | game roblox mien phi | du doan xsbd | bong88viet | jackpotcity casino review | free 50 slot mumble server | nuôi dàn đề 50 con | ketqua24h vn index | mơ thấy nhiều rắn | những bài hát karaoke hay cho nam | 188bet casino | soi kèo đan mạch cộng hòa séc | slot nghĩa là gì | bongdatructuyen keonhacai | kq100 ngay | centurion slot | nuôi dàn đề 50 con | casinos in asian countries | giochi gratis slot | casino nightclub | grosvenor casino slot machines | tai game danh bai beme 2015 | đăng nhập ku casino |