NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

cô vợ mẫu mực tập 1 | aladdin slot machine | free mobile slots | xem boi bai tay | slotted metal angle | kq7 | carte casino mastercard | casino prom theme | casino slot machines | las vegas casino png | 12bet slot | grand villa casino vancouver | online slots review | kí sự thiếu niên | css slot machine animation | casino online 188loto | game casino danh bai doi thuong | casino tumblr | grosvenor casino slot machines | casino 777 casino | vo88 | xs thu 4 hang tuan | secret of the stones slot game | m88 vin link | real slots australia | real slot machines online | mgm casino | m88 cá cược thể thao casino số 1 châu á | melbourne fl casino | casino locator map | online slots echtgeld | tạo tên liên quân đẹp | vera und john casino | bongdatructuyen keonhacai | casino sound effects | tai game danh bai beme 2015 | h reset fo4 | slot no hu | mu alpha test | tải fifa mobile |