NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slots 79 | atas casino wiki | diễn đàn xstt | ongame 222 | ssd wifi slot | game cau ca y8 | country club casino | free deposit bonus slots | en kazançlı slot oyunu | du doan xsmb t2 | rebuy stars casino | wedge lock slot dell | fast payout casino | wapvip com | jun88 jun88.casino | cách nạp tiền ku casino | luck of the irish slots | những bài hát karaoke hay | sxhn mien nam | an1 | web casino truc tuyen | slot car accessories | dg casino | winner casino app android | bongdanet livescore | bonos de casino | nằm mơ thấy vàng | hôm nay đánh de con gì | freaky fruit slot | thống kê hai số cuối | wyandotte nation casino | link vào 12bet khi bị chặn | slot machine template free | raam slot | free slots machines with bonus feature | slot machine casino games | jefe casino | casino 999 | xskt3mien | đăng nhập ku casino | vichat |