NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

phủ nano kính | tiếng anh giao tiếp trong casino | 888b casino | wolf hunters slot | xo slot | tần suất lô tô miền bắc 100 ngày | house of fun slots free coins | tai zalo ve dt | tạo dàn đề 3d | bonos de casino | kostenlose slots | cac trang gai goi uy tin | vvn88 | reel gems slot | aco slot drain dwg | thầy tuệ hải bị bắt | nhac thieunhi | casino belge en ligne | best tablet with sim card slot | nuôi dàn de 30 số khung 3 ngày | thống kê xổ số gia lai | slot trong liên quân là gì | kq30 ngày | casino trực tuyến m88 | mc vs real trực tiếp | caribic casino | cascading reels slots | giải đặc biệt theo tháng | casino vergelijken | khu rừng nhỏ của hai người tập 30 | chuyển file word sang excel | casino đà nẵng | mega slot | titanbet casino | konami slots online | vip casino | fruit mania slot | cách xóa trang | xổ số miền bắc minh ngọc | xổ số minh ngọc miền bắc | keomacao |