NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

đề về 11 hôm sau đánh con gì | casino hải phòng | casino belge en ligne | xeng club slot | casino online danmark | slots free spins | wolf hunters slot | grand lake casino | casino trilenium | nhận định as roma | chot lo to | trực tiếp casino | tỉ số pháp maroc | online casino no deposit bonus codes | xosobamien mobi | gà mạng | netent online casinos | kí tự tên liên quân | 666 casino | pci card in pcie slot | online slots pay by phone | casino hồng vận | casino royale | appointment slots | mega vietlott | fish casino | fruit slots online | video poker slots | khách sạn phú an | slot weld | raging rhino slot machine | slotty casino | kynu huong tuyet | con số may mắn hôm nay huyền bí | slots in maryland | robin slot | spinaru casino | judi slot banyak bonus | chip casino | lichthidau bongdahomnay | sunrise casino nha trang | diamond casino and resort | v-league 2024 lịch thi đấu | b68ng com | intertops casino | las vegas casino | spela slots | slot machine java | thống kê tần suất | 5 slot map device |