NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino robbery | chơi casino trực tuyến chỉ có thua | twin là gì | 1973 mệnh gì | live casino online free | tỷ số trực tuyến 7m cn | vip slots review | seneca resort and casino niagara falls ny | synthesizer | cascading reels slots | cap slot | live dealer casinos | bang tan suat loto | thống kê kqxsmb theo tổng | cách xóa trang word | witcher 3 slots slots slots | freaky fruit slot | lucky89 border casino | loi giai hay lop 5 | rebuy stars casino | code gunny mobi haiduong pro | sky club | exciter 135 giá bao nhiêu | mr vegas casino review | casino royal | evolution gaming slots | x16 lane graphics slot | druid spell slots | casino bonus gratis senza deposito | laptop lock slot | casino with poker tables near me | vinagames | eimi fukada đến việt nam | slot madness | slot casino free | casino phú quốc mở cửa | lich ucl | tải minecraft 1 19 miễn phí | blazing star slot | spokane casino | 88win casino | cairns casino | trade casino | book of ra deluxe slot | luv slot | mgm grand casino detroit hotel | lucky ruby border casino | ban yourself from casino | charlie m casino |