NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

samsung tablet with sim card slot | live house casino | slotomania slot | irish casino sites | casino tilbud | game aog | slot king club | slot 777 | trò chơi casino trực tuyến | cascading reels slots | slotted disc | biển số xe 78 | ca sĩ giấu mặt | tyle nhacai | ag ld 789 | clip 8 phút diễn viên về nhà đi con | vua hải tặc - bắn cá 4d mới 2021 | casinos in henderson nv | royal gclub casino | free slot games with bonus rounds | chăm sóc ô tô | online slots pay by phone | ẽxciter 135 | y8 2 người | casino trực tiếp | casino song | am muu va tinh yeu tap 731 | mgm casino | bảng đặc biệt năm 2002 | surface pro 4 sd card slot | lịch cúp điện bình phước | casino tuyển dụng | giá xe lead 2021 | ba giai tu xuat mp3 | casino catalogue | hack slot game online | slotted or unslotted waste | parx casino bonus codes | casino in ho chi minh city | epic casino | willy wonka slots | đá gà casino trực tiếp hôm nay | slotted hex nut | kí tự tên liên quân | jackpot city casino free download |