NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

toàn chức cao thủ phần 3 | truyện ngon tinh | nguyên nhân dẫn đến chiến tranh thế giới thứ 2 | reel money slot | đề về 24 | thông kê 2 số cuối giải đặc biệt xsmb | wynn casino | 77betsports slots | đầu số 0127 đổi thành gì | lộc 79 win | 777 casino games | chơi roblox miễn phí trên google | nonstop ket thuc lau roi | tỷ số trực tuyến 7m cn | betvisa casino | free slot games with bonus rounds no download no registration | 888b today | james bond casino | expresscard slot egpu | free spins no deposit casino | slot là j | lê bống lộ 7p clip | casino realistic games | mhw slots | clara lee | chot lo | v slot 2040 | gaito không vào được | ca si giau mat chung ket | event slot | cuclacnet | danh sách các casino ở việt nam | casino caliente on line | bilutv net | casino royale | casino renovations | win888 casino | bonus casino sem deposito | 7m cn vn | woodbine casino valet parking |