NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

free slots machines with bonus feature | nằm mơ thấy mình đưa tiền cho người khác | zingpay | sơ đồ tư duy tây tiến | bet 168 169 | mannhantv | sodo casino 68 | best slots in biloxi | cgv móng cái | audi q8 giá lăn bánh | super 7 casino | how many ram slots do i have | virgin slots mobile | venus casino cambodia | game nữ hoàng ấn độ | big bang theory slots | iwin casino | trực tuyến casino | mobile online casino south africa | vegas casino | casino de monte carlo monaco france | xe bus 08 | starlight kiss slot | chumba casino codes | baocaonoibo | 32 bit pci slot | casino bonus deutschland | slots nghĩa là gì | ae3888 thaotruong | vtv6 trực tiếp bóng đá | mod skin lq | nguyên nhân chiến tranh thế giới thứ 2 | fifa mobile nhật | bảng đặc biệt năm 2002 | online mobile casino games | genting casino liverpool | dimm slots là gì | wm casino | slotted post | penthouses cuộc chiến thượng lưu tập 7 | casino hl |