NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino corona phú quốc | galaxy casino | playboy online slot | live casino usa | cây lưỡi hổ | những bài hát karaoke hay nhất | game h5 la gì | willy wonka slots | kunet | mơ người chết sống lại | ku casino us | keonhacai mem | truyen ngon tinh | how to check number of ram slots in laptop | mad slots | nap sohagame | chốt lô | casino in russellville arkansas | top slots | audi q8 giá lăn bánh | bet888 casino | mơ rắn | dự đoán 2 số cuối giải đặc biệt hôm nay | mobile casino canada | gaminator slot | game khung log | ku casino | bingo slots uk | trực tiếp bóng nữ | xổ số tài lộc | laptop lock slot | game xèng đổi thưởng | spin palace casino review | online casino verification | emperor of the sea slot | casino caliente on line | gift shop slot | sẽ gầy | nha cai casino | lexar usb 3.0 dual slot reader | game bai doi thuong bay777 slot | lô nên tốp | pci 2.1 slot | du d0an xsmn | dự đoán xổ số bình thuận | game cau ca y8 | con slot | casino house |