NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

hanoi casino list | corona casino | joker123 slot | salary blackjack dealer | slot bonus | minecraft 1 18 1 | casinos online autorizados em portugal | chot lo | u turn slot | video casino games slot machines | gai goi vip sai gon | bóng đá 8899 | hyper casino willkommensbonus | eurogrand casino | win99 casino | slots real money | casino slot oyna | jun88 jun88.casino | maplestory v matrix slot enhancement | dubai casino 88 | napa casino | hatano | vận mệnh kỳ diệu tập 9 | biggest online casino | online casino real money | mr green casino erfahrung | slot là gì | saigon casino | thống kê giải đặc biệt theo tuần theo tháng | slot machine bonus | thống kê giải đặc biệt năm 2024 | lớp học đề cao thực lực manga | sky casino | tải teaching feeling | jeetwin casino | sky club | goo88 | taxi 3d | situs judi online slot | dudoantyso bong da | jackpot giant slot review | jackpot casino login | liên quân lmhmod |