NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

wild swarm slot | slots real money | jun88.casino | gtx 1060 pci slot | buffalo rising megaways slot | sở kiều truyện zing tv | audi q8 giá lăn bánh | casino slots real money | pink elephant slot | g casino online | dự đoán 2 số cuối giải đặc biệt hôm nay | bet699 | trực tiếp casino | giang hồ phố hoa | mystery joker 6000 slot | xoilac tv 90 phút | 1 slot nghĩa là gì | câu cá cùng warrior | hack slot 2024 | black mummy slot | zalo zalo | hanoi casino | casino kubet | xstd90 | slot 888 dragon | bắn cá bctc trên web | ku777 casino | tiki paradise slot | code free fire ko giới hạn 2021 | win99 casino | ok online casino | fantasy fortune slot | city of dreams casino | casino baden restaurant | doraemon tập mới | tv hay org hoat hinh | casino pier seaside heights | immortal guild slot | hotels near blue chip casino | chống chuột ô tô | casino based on | mạt sắt là gì | giờ reset cầu thủ | regular slotted container box | casino theme party supplies | chumba casino codes |