NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

lq mod skin | evowars io | cleopatra casino | din casino bonus | bonus code for slots lv | huuuge casino | casino blu ray | lich thi dau1 | slotted post | ức là bao nhiêu | tạo dàn 3d | mơ thấy hổ | ios 15 6 beta 3 | casino ở sài gòn | jun88 casino | asideway com | tai sun casino | casino bmt | game dá bóng y8 | slot filling dialogflow | kinh nghiem chien thang baccarat | tao nick dot kich | wolf hunters slot | chăm sóc xe | nohu3 | foxwoods casino to mohegan sun | casino đánh giá | casino lucky | casino hồng vận | chơi casino | source code casino | fret slotting jig | clip 8 phút vtv | 1x slot casino | napa casino | hot slots | ketqua xo | matrix 8 casino | ký tự liên quân | casino sun | 90 phút chấm tv | playtech casino software | đồ sơn casino | game slot doi thuong uy tin | same day withdrawal online casinos | bet888 slot | casino phú quốc tuyển dụng mới nhất | lucky8 casino |