NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

bang dac biet nam 2021 | casino theme party | chăm sóc ô tô | hôm nay đánh de con gì | tên pubg | juegos de casino online con dinero real | money game slot | coral slots | casino table price | đá gà trực tiếp casino thomo | free slots that pay real money | thống kê lotto | jogos de slots online | grand victoria casino elgin il | thông tin tuyển dụng casino hội an | mơ thấy người chết sống lại | game bai slot | starlight kiss slot | online slots review | same day withdrawal online casinos | trực tiếp bóng đá 91 | sportsnation casino | lich thi dau u23 chau a 2024 | casino theme party supplies | thống kê giải đặc biệt theo tuần theo tháng | twin casino login | mobilebongdaso | live casino online | minecraft 1 18 tiếng việt | web slot | tự tạo icon | casino night decorations | 888 casino gratis spins | novomatic slot machine | new mobile phone casinos | nouveau riche slots | groupe casino limited | casino bank | nhà cái uy tín nhất việt nam | nuoilo 247 net |