NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot drain sink | dự đoán xsmb atrungroi | slots that pay cash | online slots deutschland | keomacao | dragon island slot review | v slot 2040 | win888 casino | bongdaso24h | sòng casino | carte casino mastercard | casino campuchia mộc bài | grand lake casino | new mobile phone casinos | fifa mobile japan | casino thien ha | video slot bonus | captain jack casino download | pocket slot maplestory | best uk slots | iwin88 | harley davidson slot machine | chumba casino app | thong ke lo | mi 8 lite sim slot | munchkins slot | live casino house | slotted strut | boi bai tay | slots casino no deposit bonus | thống kê giải đặc biệt theo năm tháng tuần | mơ thấy chó đánh con gì | fifa nhật bản | tạo tên liên quân đẹp | kinh nghiem chien thang baccarat | twin là gì | soi247 | cửa gió slot | ku casino apk | xstv hang tuan | slot 888 | dream slots | pikachu online game | xstd90 | nằm mơ thấy dây chuyền vàng đánh đề con gì | mad mad monkey slot | bảng đặc biệt 500 ngày | cây lưỡi hổ |