NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

social | casino slots real money | lời giải hay lớp 5 | pharmacie casino montpellier | live casino tables | tuổi sửu mệnh gì | vegas casino | thống kê tần suất lôtô miền bắc | 24 vina | casino bonus gratis senza deposito | roma đấu với feyenoord | european online slots | clip của diễn viên về nhà đi con | đôremon tập dài | online slots for money | warehouse slotting | golden tripod casino | slot cars | the nugget casino | all slots canada | gw2 enrichment slot | clara lee | societal | royal vegas casino free slots | vip club casino | miami casino hotel | raam slot | casino hotel | wwin | fun88 nhanh | dự đoán xsmb hôm nay | gai goi net | snake eyes casino | circus digital | paypal casino mobile | laser fruit slot | all slots canada | mơ thấy ma đánh con gì | slots 79 | thống kê kqxsmb theo tổng | kq100 | tijuana vs | cửa gió slot | tải fifa mobile | slot fish | hack game slot | fargo casino | oklahoma casino resorts |