NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

sky vegas casino | captain jack casino download | ddr2 dimm slots | casino online blog | doremon tap dai | thống kê giải đặc biệt theo tháng năm | ma nữ đáng yêu tập cuối | birds on a wire slot | slot 918kiss | vòng loại world cup 2022 khu vực bắc mỹ | ag live casino | hyper casino willkommensbonus | bóng đá tv | lara croft slot | stash of the titans slot | thống kê xổ số bắc ninh | mod skin lq | wolf hunters slot | huyền hạo chiến ký | disco spins slot | casino vũng tàu | 32red slots | spela slots | lq mod skin | casino hà nội | game đá bóng world cup 2020 | soi cau xs wap | nạp mobile legends | online slots welcome bonus | online casino blog | kim sa casino | ketquaxoso miennam thu 6 | kim quy slot | evolution gaming slots | giochi gratis slot | casino campuchia mới nhất | w88 slot | ku11 today | thông kê tần suất loto |