NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

1429 uncharted seas slot review | xsmn 28 02 24 | ai my nhan zingplay | taxi 3d | spinaru casino | biển số xe 78 | cách xóa trang trống trong word | casino max bonus codes | trực tiếp copa america 2021 | slot maker | tỷ lệ kèo tv | genting casino in london | casino cage | tiem vang kim hung quan 5 | airport slots | 2fb live | online casino mobile bonus | vanphongdientu vatm | chiêm bao thấy rắn | maxims casino london | soi cau vietlott | happyluke casino trực tuyến | expansion scroll of radiance slot mu | fb88in | thẻ cào miễn phí | nuoi lo khung net | sex kynu net | ngây thơ miền bắc | quay man club | hanoi casino poker | monte carlo casino monaco | same day withdrawal online casinos | vip slots review | xổ số ngày 27 tháng 6 | diamond empire slot | ace88 info | zingpay | xs thu 4 hang tuan | slot là gì trên facebook | tỷ số trực tuyến 7m cn | wynn casino macau | does my laptop have pcie slot | doraemon nobita và cuộc chiến vũ trụ tí hon 2021 |