NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot parlor | fun 8802 | betphoenix casino | hoá ra em rất yêu anh tập 20 | kẻ săn anh hùng | tỷ lệ kèo bkth | casino online italia | happyluke casino trực tuyến | vung tau casino | tạo dàn đề 2d | aluminum slots | ok88 | high variance slots | phu quoc casino | casino crown đà nẵng | lịch đá bóng aff cup 2021 | quay thử tìm cặp số may mắn | minecraft 1 18 0 apk | game casino trực tuyến | tai game naruto đại chiến | slot club 777 | naruto truyen ki | warehouse slotting | game slot đổi tiền mặt | nye online casinoer | jogos de slots online | maquinas slots | night rush casino online | vua hai tac zing | how many ram slots do i have | royal casino | tải teaching feeling | các loại bài trong casino | an lạc phùng khoang | bongda88 com | đánh bạc casino | soicau3cang | planner with time slots | vikings go to hell slot | vuong quoc vang slot | event slot | ketqua wap | cách nạp tiền ku casino | tạo dàn đề 3d | event slot | fallout new vegas casinos |