NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

online casino 120 free spins | casino lights png | xổ số ngày 27 tháng 6 | ban ca online 4 nguoi | codeplay | slots in maryland | đăng nhập tobet88 | soi kèo bóng đá | igram io | cgv móng cái | xsdientoan | m88 vin link | migliori siti slot online | dubai casino 88 | mobile casino | deutsche casinos mit bonus ohne einzahlung | soi cầu xsvl tài lộc | vòng quay kim cương free fire | link 90p | en kazançlı slot oyunu | pocket slot maplestory | canon 2900 driver 32 bit | hoyeah slots | kqbd7m | game slot đổi thưởng moi nhat | bắn cá đổi thưởng - thẻ cào 2021 | jackpot slots games | casino hoi an | game bài catte online | cổphieu68 | nextgen free slots | u23 dubai cup | cau dep 88 | genting casino liverpool | monopoly slots | qq app | m2 nvme slot | casino night attire | game xèng đổi thưởng | casino in ho chi minh city | fruit mania slot | sex tre em my | casino babylon macau |