NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

biggest online casino uk | b79 club apk download | ketquasoxo mb | slots in maryland | ảnh nobita | casinos in south dakota | circus circus hotel casino reno nevada | ảnh nobita | kubet -- ku casino | khách sạn phú an | bet casino | chòm sao may mắn của anh tập 11 | city of games slots baccarat | cây lưỡi hổ | happyluke casino | truc tiep bong da tv | how to play the penny slots | bang thong ke loto | xổ số cần thơ ngày 19 tháng 1 | macau casino | best online slot machines for real money | glow slot | slogan tiếng anh | casino tumblr | casino town | royal casino cf | casino venus | hollywood casino las vegas | aco slot drain dwg | joker123 slot | slot no hu | sakura thủ lĩnh thẻ bài phần 2 | casino restaurant | penthouses cuộc chiến thượng lưu tập 7 | ladbrokes casino no deposit | video poker vs slots | auto click nhanh nhất | ho chunk casino dells | fifa mobile nhật bản | giai dac biet nam | thống kê hai số giải đặc biệt |