NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

bigwin99 slot | lich thi dau bong da seagame 2017 | nằm mơ thấy dây chuyền vàng đánh đề con gì | best online casinos for us players | best slot machines at borgata | ibongda tv trực tiếp | golden galaxy casino | code siêu cấp gunny mobi | số vietlott mega | 888 bet casino | baocaonoibo com | kiểm soát điều kiện fo3 | deposit 3 casino | zindo vin apk | seriöse online casinos | game slot doi thuong uy tin | warlords crystals of power slot | how to ban yourself from the casino | play raging rhino slot | big wheel slot | đề về 34 hôm sau đánh con gì | slot studio | slotsmillion casino | stash of the titans slot | sex kynu net | choione | slot vip | chung ket the gioi lmht 2017 | ketquasoso | casino nightclub | cô vợ mẫu mực tập 1 | casino bola | jinni lotto casino | online casinos that accept neosurf | việc làm 123 | willy wonka slots | situs judi slot terbaik | sòng casino | tải play together miễn phí | casino vip program | soi cau 666 mien phi | live casino casimba | nye online casinoer | water dragons slot | societal | nettruyen theo dõi |