NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

shopee app | nằm mơ thấy cứt | xổ số an giang ngày 25 tháng 2 | chim bay vào nhà đánh con gì | điều cuối cùng ấy truyện tranh | mơ thấy tiền đánh con gì | play online slot machines for real money | dual slot | kqxs30 | chạm tay vào nỗi nhớ tập 17 | campuchia casino | mgm casino washington dc | golden hoyeah slots | fifa hàn | 5 homestay vũng tàu | casino bern speisekarte | betvictor live casino | tijuana vs | online casino no deposit bonus codes | bongdanet livescore | tải fifa nhật | tên kí tự liên quân | all slots canada | ĩp | buzz bingo and the slots room barkingside | 7 feathers casino and resort | lincoln city hotels near casino | giochi online slot | vanphongdientu | xsqn | đổi thẻ 247 | winbet casino az | excalibur hotel & casino | top 10 best online casinos | trò chơi roblox | tisotructuyen | momo app | yui hatano | lịch chung kết world cup | bikini beach slot game | casino truc tuyen | casino en linea mexico | fim de che maya | sparks slot review |