NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

vitamin 3b có tác dụng gì | ku casino 888 | live casino house | burning desire slot review | vanphongdientu vatm | uk casino | bingo live | casino mộc bài tây ninh | great wild elk slot | jugar casino online | casino winner kroon | thống kê giải đặc biệt tuần tháng năm | chip casino | thông kê tần suất loto | 3 reel slots online | casino definition | taskbar | zing new thể thao | dd xstn | ibongda nhan dinh | freebet slot online | online casinos in ontario | bournemouth đấu với chelsea | thánh bắn cá slot | truc tiep oman vs turkmenistan | du doan trung thuong xsmb | mgm grand hotel and casino las vegas nv united states | golden cherry casino no deposit codes | casino png | kết quả trận tokyo | đb | beste scientific games online casinos | cách xóa trang word | mgm grand hotel and casino las vegas nv united states | ketqua net 60 ngày | candy jackpot slot machine | slots free spins no deposit | game slot online |