NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino royale vietsub | cách chơi casino | grand ivy casino | best online crypto casino | cô dâu gán nợ tập 1 | jack king casino | medusa casino | joe fortune casino | highest paying online casino | lịch thi đấu v league 2024 | casino jefe erfahrungen | vietnam casino | slot online | casino minimální vklad 100 kč | ket qua 3d | new casino not on gamstop | golden goddess free slot machine | ketqua xo | đề về 82 hôm sau đánh con gì | golden nugget casino | best casino hotel in hanoi | wintrillions casino review | pay88 club | lịch v league 2024 | copa truc tiep | slot 999 online | slotted pipe | mgm casino washington dc | casino hoiana | trực tiếp đá gà casino 67 hôm nay | xs thu 4 hang tuan | vitamin 3b có tác dụng gì | cô vợ mẫu mực | starlight longan | slot drill | casino campuchia mộc bài | hitstars casino | tải vichat |