NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

crown bavet casino hotel | nằm mơ thấy mình đưa tiền cho người khác | rồng bạch kim 666 cầu rồng bạch kim chuẩn | tivoli casino | venetian rose slot | maquinas slots | ty le ca cuoc bong da cambongda | city of dreams casino | mad mad monkey slot | cesar casino | vung tau casino | quay thử đồng tháp | gia vang 9999 nam 2009 | talking stick resort and casino | game h5 la gì | gypsy moon slot | mu truyen ky | dự đoán xsmb xs me | dagathomo tructiep | mơ người chết đánh con gì | 8868 | xstp thu7 | soi kèo bóng đá | trực tiếp bóng đá 101tv | vozgame | 188keo | game chú mèo máy đến từ tương lai | giochi gratis slot | download zalo | winstar slot machines | nieuwe casino online | bắn cá casino | live casino house | holy moly casino slot | casino trực tuyến uy tín | casino night attire | live casino | live casino free play | reset fo4 | antwerp fc |