NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino slot games | tim lai yeu thuong | naruto truyen ki | sunrise casino nha trang | angel of the winds casino | halloween jack slot | sbobet di dong | mega casino login | win win casino | casino hạ long | mr vegas casino review | bắn cá đổi thưởng - thẻ cào 2021 | legend of cleopatra slot | siêu nhân thần kiếm game | soi cau hcm chinh xac | sexxy tickets 18+ event westgate las vegas resort & casino | bướm số mấy | slots 79 | danh sách các casino ở việt nam | vip casino | đề về 68 hôm sau đánh con gì | free casino slot games | groupe casino limited | lions pride slot | online casino not registered with gamstop | deutsche casinos mit bonus ohne einzahlung | fortuna slot | lô nên tốp | rosenborg slot copenhagen | extra chilli slot demo | mpu slot | signal slot qt | nằm mơ thấy nhiều rắn | bar 7 casino | trò chơi casino trực tuyến | types of casino games | luxor slots | pragmatic slot demo | list of casinos in iowa | siti casino online | montecarlo casino | casino online vietnam | casino bonus calendar | casino ở hà nội |