NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

spela slots online | lost life | najlepsie online casino | poisoned apple slot | genting casino | tyle nhacai | casino trilenium | casino royale suit | free online video slots | casino lucky | slot club 777 | lịch thi đấu lck mùa xuân 2024 | casino game code | w888 casino | sportsbook slot | link 90p | best slots in atlantic city | slot fish | best slots in atlantic city | dao hai tac online | choi game roblox mien phi | fake slots | 52choigame | cái lò tôn ôm cái lò gạch | yêu nhầm chị dâu tập 29 | beste netent casino | v slot wheels | casino trưc tuyên | casino blu ray | cách tải minecraft 1 18 | soi cau vip xsmb | ánh dương lòng tôi tập 13 | rồng vàng slot | casino royale | clip 8 phút vtv về nhà đi con | single bet | casino software provider | kim sa casino | xổ số ngày 27 tháng 6 | wynn casino macau | golden grimoire slot | fun casino fun | hack quay slot |