NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

trang chu vltk mobile | elvis the king slot | lotus flower slot machine online | ẻt | game of thrones slot machine | asian slot games | slots top up by phone bill | slot machine probability | ku casino us | iwin88 | taskbar | xmas slots | slot machine | golden tiger slot | vvn88 | naruto phần 2 | tạo tên liên quân đẹp | thống kê hai số cuối | fake slots | tiếng anh giao tiếp trong casino | casino confidential | online slot machines uk | dubai casino | cubet | free online video slots | máy tính casino | đá gà casino trực tiếp ngày hôm nay | monkey money slots | casino philippines | slot 9999 | nguyên nhân dẫn đến chiến tranh thế giới thứ 2 | xsbinh vuong | foxwoods casino to mohegan sun | kết quả lét | tải trò chơi đua xe | monte carlo casino | 12 bet az | slots plus casino no deposit bonus | igt slot games | judi slot banyak bonus | casino war online | xe lead giá bao nhiêu | agen judi live casino |