NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

wedge lock slot dell | nuôi dàn de 30 số khung 3 ngày | wild shark slot | antique slot machines for sale | kq bd 24 | tai zingplay ve may tinh nhanh nhat | game bai doi thuong bay777 slot | chơi casino online | casinos en colombia | kubet -- ku casino | ku casino top | doraemon nobita và vương quốc robot | vua hai tac zing me | wwin | casinos in birmingham alabama | online casino guide | ku casino fan | royal casino online | casino phu quoc | slot parlor | green yellow casino | 90 phút chấm tv | cau dep 88 | 888 slots | xoilac tv 90 phút | sv388 casino | choi game 98 man hinh rong | tropicana casino online review | casino raiders 2 | hex slotted screw | playboy online slot | sv388 casino | win777 casino | máy đánh bạc slot machine | casino ở campuchia | agen judi live casino | free spins no deposit casino | ban acc fo3 | dd xstn | game bai doi thuong lang vui choi | thống kê xổ số gia lai | mobile casino canada | trang casino | genting casinos uk ltd | yukon gold casino | xổ số đà lạt ngày 9 tháng 04 | sex tre em my | fifa hàn | 888 casino online |