NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

cá cược xosobet | conan tập mới nhất | casino online uy tín 10nhacai | giant panda slot | isa slot motherboard | cryptocurrency casino usa | doc truyen ngon tinh | jackpot giant slot | online casino providers | blv giàng a phof trực tiếp | hex slotted screw | logo casino | online slot machines uk | aco stainless steel slot drain | cascading reels slots | mơ gãy răng đánh con gì | expansion slots | lich thi dau1 | valley view casino | mobile slots pay by phone bill | permainan slot online | hồ tràm casino | giải vô địch na uy | doraemon tap dai | list nhạc karaoke | vulkan casino | michigan casinos map | casino hotel for sale | new88 casino | evowars io game y8 | best online casino in new zealand | chống chuột khoang máy ô tô | slot demo | top casino games | doraemon tập dài | palace slots casino | thống kê giải đặc biệt tuần tháng năm | slotted angle furniture | rio all suite hotel & casino | slots top up by phone bill | g25 | v6bet | casino mobile slots | king slot | chumba casino codes | trochoinet | ag live casino | casino near me | xổ số an giang ngày 9 tháng 6 |