NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

tinder web | kq30 ngày | tải app ku casino | live casino online free | huuuge casino | kensington lock slot là gì | bắn cá quay slot | xổ số tài lộc | online slots deutschland | casino royale summary | kq7 | soi cau xs wap | 999 slots quay hũ thần tài | best casino affiliate programs | dac biet năm | sportsbook slot | online casino games real money | xuatnhapcanh hochiminh | slots casino no deposit bonus | marco polo slot | medusa ii slots | casino campuchia mới nhất | slots capital | game casino truc tuyen | dudoantyso bong da | kensington lock slot là gì | kí hiệu đặc biệt liên quân | tv casino | bally slot machines | xổ số đồng nai ngày 2 tháng 8 | tiger casino slots | crank handle slot re2 | 888 slot | trang ve thon da mp3 | jackpot dreams casino | city of dreams casino | chot lo | chotloto | dudoantyso bong da | thiendiahoi | diamond casino and resort | k8 casino review | xsmn 18 4 2023 | mơ thấy người chết đánh con gì | k8vn | free slot machines with bonus | caribic casino | live casino | online casino usa | seneca niagara casino and hotel |