NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

best slot machines at borgata | sổ mơ lô đề dân gian | big slot wins | cô giáo thảo | mi 8 lite sim slot | captain jack casino download | lucky247 casino | xskt3mien | quay thử phú yên | truyện tranh sex màu | happy luke casino | 888 casino online | jungle trouble slot | slots animal | luckia casino | sportsnation casino | usb dongle with sim card slot | casino trực tuyến uy tín nhất | tai ku casino | anonymous casino | trò chơi casino trực tuyến | quay thử tìm cặp số may mắn | dolphin gold slot | snake eyes casino | intertops casino | casino online fund | vicky ventura slot | 88 slot | slots nghĩa là gì | private casino party | bongda88 | cô vợ bắt buộc tập 11 | ww88 casino | khởi nghĩa hương khê | lucky89 border casino | 2 x pci slots | expresscard slot egpu | slot reds | casino del bel respiro | tần xuất lo to | xem bói ngày tháng năm sinh | chumba casino free sweeps | game khu rung bi an | xiaomi mi 8 lite sim card slot |