NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

isle of capri casino | crown casino | quay thử xsmn 168 | free slots with bonus | đá gà cựa sắt casino | vn vs jor | k league 2 | 1 x pci e x16 slot | 007 casino | kings romans casino | xổ số miền bắc minh ngọc | mơ thấy mèo mướp | soi kèo barca | dự đoán xổ số bạc liêu | tin chuyển nhượng chelsea | halloween jack slot | gday casino mobile | vệ sinh buồng đốt | lịch nghỉ tết ngân hàng | aco slot drain | yêu nhầm chị dâu tập 17 | idn slot | casino 1хслотс | free online video poker slots | y8 1 nguoi com | xổ số kiên giang ngày 1 tháng 5 | ongame 222 | casino chips | casino vergelijken | xổ số thịnh nam bạc liêu | maquinas slots | poppyplaytimemobile club miễn phí | playtech casino software | zalo chat | poisoned apple slot | nowgoal tieng viet | blv giàng a phof trực tiếp | slot trong liên quân là gì | casino philippines | dow zalo | casino machine games | golden sevens slot | slot casino gratuit | dreams casino mobile | casino trực tuyến | win 88 casino | đăng ký jun88 jun88.casino | situs judi slot terbaik | kết quả xsmb net 30 ngày gần nhất | s689 casino |