NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

7 spins casino review | 24 vina | fun casino online | chăm sóc xe hơi | giờ reset fo4 | naruto phần 2 | đánh cắp giấc mơ tập 1 | tai zingplay ve may tinh nhanh nhat | slot giochi | fairy tail phần 3 | copa truc tiep | mơ thấy người chết đánh con gì | spbo live score | game 777 slot | retro reels slot | thiendia vn | caesars palace casino | quá khứ của win | top 10 casino | bán cá hổ bắc tphcm | xổ số đồng nai ngày 22 tháng 3 | slot game là gì | paradise casino las vegas | old slot machines for sale | xs mỹ hạnh | m88 sảnh casino | vé vào casino phú quốc | sidewinder slot | booking time slots online | genting casino liverpool | golden galaxy hotel & casino | ipad 6th generation sim card slot | trò chơi casino | vue component slot | slot filling nlp | deposit 3 casino | melbourne fl casino | mơ người chết đánh con gì | your name zing tv | thống kê hai số cuối giải đặc biệt | lee sa rang |