NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

dàn lô bất bại | bingo sites with slots | fruit slots online | popular slots | kickapoo lucky eagle casino events | royal casino restaurant | casino đánh giá | thống kê lo | play free slots | nettruyen theo dõi | royal casino | beste scientific games online casinos | iron man 3 slot | caribic casino | doc truyen ngon tinh hay | casino hạ long | night rush casino online | penthouses cuộc chiến thượng lưu phần 2 tập 7 | gold club slot machines | no account casino trustly | social casino games market size | 7 spins casino review | ag live casino | cách tính tài xỉu bóng đá | crypto casino no deposit bonus | golden sevens slot | 99qh88 | unity slot machine tutorial | slot 777 | payment gateway for online casino | golden fish tank slot | xem đá gà trực tiếp casino | gaem | hanoi casino poker | 8 day casino | slots lv | nieuwe casino online | dead or alive slot | giochi gratis slot | winbet casino | best approach diamond casino heist | mơ người chết sống lại | lucky casino | visa electron casino | hollywood casino las vegas | ly cay bong mp3 | 6696 | casino kubet | tuyển dụng casino tphcm |