NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slots nomini | roblox mien phi | ice ice yeti slot | casino deutsch | truyện ngôn tình hay nhất | bonus member baru slot | sdxc card slot | casino hoiana | ban yourself from casino | viết thư upu năm 2024 | chuyên trang xổ số hàng đầu việt nam | microgaming live casino | slot filling nlp | 32red casino review | slot machines in australia | wyandotte nation casino | casino girl | land slot | pci card in pcie slot | lá 3 bích | soi cau 666 mien phi | slot machine bonus | swipe and roll slot | hotels near blue chip casino | thống kê lo | bài hát karaoke hay | truyên ngôn tình hay | expansion scroll of radiance slot mu | ibet789 | dealer casino | quay hu slot | first deposit bonus slots | how many caesars casinos are there | extra chilli slot | slot slot | new casino not on gamstop | best no deposit casino bonus codes | msx 150 | tải fifa mobile | ku casino -- link | slot icon |