NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

canon 2900 driver 32 bit | booking time slots online | big bang theory slots | bitsat slot | winning room casino review | play slots for real money | kensington lock slot là gì | bói ngày sinh | wap xs | slots garden no deposit bonus codes 2018 | đăng nhập ku casino | sport288 | giá xe taxi | ainsworth slot machines | around the world slot | xo so truc tiep 3 mien minh ngoc | game bài slot đổi thưởng | casino viet | live dealer casinos | casino night decorations | bingo slots uk | circus circus hotel casino reno nevada | steam tower slot review | saipan island casino | lich thi dau chung ket the gioi lmht 2016 | where is the largest casino in the world | slot drain sink | casino online w88 | xsmn 1 3 2022 | xổ số đồng nai ngày 2 tháng 8 | smb to pci e slots | slot milling | tỉ số và tỷ lệ 2in1 | 1 x pci e x16 slot | vesper casino royale | casino bonus gratis senza deposito | w540 ram slots | fun casino fun |