NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

kết quả xsmb net 30 ngày gần nhất | din casino bonus | thong ke tan suat loto | situs judi slot terbaik | most secure online casino | cau dep 88 | abc crown casino | big slot wins | hellboy slots free | logan mienbac | fruit spin slot | kqsxmb100ngay | casino mobile slots | casino games | taitrochoimienphi | aluminum slots | hatano | xsmnchu nhat | gday casino mobile | msx 150 | carousel casino | express casino | huong dan tai xuat kich | hp z420 pcie slots | 1973 mệnh gì | 888 casino login | birds on a wire slot | xsmb 2 số cuối giải đặc biệt | huong vi tinh than tap 34 | casino la vida | royal casino restaurant | free slot games canada | hack slot 2024 | sunwin lịch sử tài xỉu thua | fan tan casino | resorts international casino | casino kubet | tim ban tren zing me | wedge lock slot dell | casino slot games | soi cau hcm chinh xac | onebox63 | hoiana casino | ace88 info | fifa hàn | bongdalu 38com | dow zalo |