NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

vespa slot | 3 reel slots online | city of games slots baccarat | 3 x pci slots | expansion slots | xosobamien | click 150 thai | đánh bài casino trực tuyến | slots heaven review | slot | slot sensor | xổ số bạc liêu 25 tháng 1 | winner casino | lucky time slots | react casino | lich v league 2024 | code king piece 2021 | custom casino chip | tân suất loto | doraemon tập mới | nhập code omg 3q 2022 | slot array antenna design | high 5 casino slots on facebook | m88 casino | mobilebongdaso | casino billboard | casino đồ sơn | cryptocurrency casino usa | nhà cái thưởng thành viên mới | soi cau tg | 10 free no deposit mobile casino | casino engineering | slot casino gratuit | video poker slots | xổ số bạc liêu 25 tháng 1 | tito casino | làm casino ở philippin | honey select | tropicana online casino | slotted or unslotted waste | lucky casino | casino affiliate | slot online | gopher gold slot | free slots with bonus | ho yeah slots | jungle trouble slot | video slot bonus |