NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

cho em 1 slot | win99 casino | play free slots | đề về 02 hôm sau đánh con gì | game bai doi thuong lang vui choi | wild shark slot | lucky89 casino | casino night outfit | v6bet | dagathomo tructiep | slot racing | jogos de slots online | jackpot slots games | choi game 98 man hinh rong | thư upu năm 2024 | bonanza slot big win | casino raiders 2 | pt slot | sunwin lịch sử tài xỉu thua | sxmn 30 | cô vợ bắt buộc tập 26 | ban yourself from casino | casino saigon | pocket casino | casinos gratuitos | best online slot machines for real money | đá gà trực tiếp casino thomo | số con rắn | tải game đua xe | bingo slots uk | lucky slots casino games | du doan lodephomnay | pocket slot maplestory | lịch thi đấu futsal 2021 | đăng nhập tỷ phú 88 | đề về 11 hôm sau đánh con gì | soi cau mn hôm nay | mobile casino slots | how far is chumash casino from santa barbara | các bài hát karaoke | slogan tiếng anh | fishing casino | green yellow casino | slot belvedere | antique slot machines | hanoi casino list | 4399 nau an | choi roblox | gem slot |