NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slotted metal angle | cesar casino | bestes casino las vegas | las vegas casino | ketqua24h vn index | lịch thi đấu v league 2024 | slot pocket | vòng quay kim cương free fire | casino hcm | xoso66 | casino slot games | phatloc | get lucky casino | casinos mobile francais | tropicana casino online review | vip slot | clara lee | out lock | online casino real money | online casino guide | xổ số đà lạt ngày 22 tháng 1 | bitsat slot | du d0an xsmn | casino hl | poker star casino online | tijuana vs | 3 x pci slots | wwin | dagathomo tructiep | vợ messi | vuong quoc vang slot | tetri mania slot | casino with poker tables near me | game slot doi thuong uy tin | kết quả max 3d | live casino tables | chơi casino trực tuyến chỉ có thua | quá khứ của win | 855crown casino | tải bắn cá hoàng kim apk | trực tiếp đá gà casino | bong da chuyen nhuong | map sỏi | dinh vi bach khoa | doraemon tập dài mới |