NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino deutsch | fifa nhật | smart card slot on dell laptop | american casino city | buran casino | rio all suite hotel & casino | mpu slot | rượu sim | seneca niagara casino and hotel | casino phu quoc | casino continental | cach nap zing xu | casino sex | vua hai tac zing | gai goi vip sai gon | can you cash in casino chips anywhere | join casino | nha cai casino | chuyển từ word sang excel | baocaonoibo com | tỷ lệ kèo tv | stainless steel slotted turner | casino bonus angebote | casino nagaworld | high 5 casino slots on facebook | live casino casimba | xsmb 888 vn | diễn đàn xstt | tên kí tự liên quân | game h5 la gì | thống kê tần suất lôtô | du doan xsbd | slotted metal bar | situs slot uang asli | gold dragon slots | turnkey online casino | wyandotte nation casino | how far is chumash casino from santa barbara | real slot machines online | genting casinos uk ltd | play together miễn phí | du doan an giang | v6bet |