NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

20p slot | 88vin link telesafe | casino 999 | venus bị bắt | nguyệt đạo dị giới manga | desert nights casino | fbb88 | thuyết minh về một danh lam thắng cảnh | game slot uy tin | vnrom | casino house | swamp attack | bướm số mấy | wolf rising slot | casino 888b | play raging rhino slot | casinos in washington | corona casino | đổi thẻ 247 | cú đấm máu | giá taxi | lo gan binh duong | mơ thấy người mình thích nhiều lần | regular slotted container box | dual slot | casino in venice italy review | bets com casino | s689 casino | 10 no deposit slots | thống kê giải đặc biệt 30 ngày | dàn đề 10 số | checker bắc ninh | groupe casino limited | hotels near parx casino bensalem | fruit spin slot | new york new york hotel & casino | casino philippines | tao dan 2d | xsbinh vuong | slot icon | mơ thấy ma đánh con gì | xsmnchu nhat | thương con cá rô đồng tập 1 | tải bắn cá h5 | trực tiếp đá gà casino hôm nay | crank and slotted link | bandar judi slot online |