NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slotted strut | maquinas de casino trucos | pragmatic slot demo | xsmn 14 05 23 | tai game chem hoa qua ve dien thoai | w888 casino | best tablet with sim card slot | tải minecraft 1 19 miễn phí | casino deutsch | soi cau mb 24 | casino de monte carlo | online slots for money | c88 | bet88 slot | lucky casino free spins | trade casino | boom casino | app mod skin liên quân | xe exciter 135 | casino seo agency | casino de monte carlo | casino portugal online | vân tịch truyện zing tv | lotsa slots | fish casino | mobile casino no deposit bonus no deposit | hanoi casino poker | gold rush casino game | lịch thi đấu lck 2021 | fifa mobile quốc tế apk | tilebong88 | trochoi net | fish casino | game đáu trường khắc nghiệt | energy casino 24 | 3cang | venetian casino | v slot 2040 | soi cầu kép hôm nay | judi casino slot | casino room casino | giải vô địch brazil | kynu huong tuyet | wm casino |