NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

electronic slot machines for sale | best slot machines in las vegas | nuoi lo khung net | xe exciter 135 | thống ke loto | lee sa rang | ku trò chơi casino | xsmb t5 ht | khuyến mãi casino | casino online uy tín | super 7 casino | tải game đua xe | irish luck casino no deposit bonus | fifa mobile nhật | truc tiep bong da tv | thùng đựng đồ đa năng gấp gọn | gà đá casino | japanese video slot machine | cmd368 tv | bao khanh hoa | casino online uy tín 10nhacai | lexar usb 3.0 dual slot reader | psg đấu với strasbourg | slot machine symbols meaning | ho chunk casino dells | xổ số thịnh nam bạc liêu | casino online tgtub | slot drain sink | casino hợp pháp ở việt nam | casino online vietnam | fragment of radiance slot mu online | fake slots | casino cần thơ tuyển dụng | casino hợp pháp ở việt nam | dead target | slot mobile phones | đề về 11 | mr green casino erfahrung | fun casino online | slot pattern |