NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

bd soi keo | dự đoán an giang | câu lạc bộ bóng đá brighton & hove albion | free slot games with bonus rounds no download no registration | casino hải phòng | casino royal | nhận code gà hành miễn phí 2017 | vespa slot | slots that pay real money | cô dâu gán nợ tập 1 | w88 w88vn com | thống kê giải đặc biệt theo năm tháng tuần | đề về 11 | vô tình nhặt được tổng tài tap 13 | tải minecraft 1 18 5 miễn phí | ipad sim card slot | rắn số mấy | royal gclub casino | lich thi dau futsal world cup 2021 | game slot doi thuong moi nhat | tải minecraft 1 18 | đề về 58 hôm sau đánh con gì | free slots no deposit | reiko kobayakawa | thống kê xổ số gia lai | groupe casino limited | câu cá cùng warrior | casino online dialogoupr | gai goi net |