NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

bet365 casino bonus | vue component slot | bong888 com | thiendia vn | dd xstn | 007 casino royale | vẽ danh lam thắng cảnh | slot seal | robin hood slot | casino online australia real money | casino belge | tên liên quân kí tự đẹp | casino poker table | free 5 no deposit casino uk | neue online casinos 2020 | star casino sydney | cú đấm máu | vn88 casino | slot nghĩa là gì | casino royale online gambling | dafu casino hack | white wing manteau slot | didonghan | Chơi game bài Tiến lên miền Nam miễn phí | american online casino | casino fb88 | stt chất | free casino slot machines | new free slots | paradise casino las vegas | ồ zê | soi dàn đề 10 số khung 3 ngày | maquinas de casino trucos | code sieu anh hung hai duong pro | soi kèo 7m | win là gì | xembongdatructiep | nhạc đám cưới tiếng anh |