NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot judi terpercaya | online casinos that accept neosurf | kí tự liên quân đẹp | private casino party | how far is chumash casino from santa barbara | tại bắn cá tài lộc | hotline slot | xem bài tây | gypsy moon slot | exciter 135 | 7m cn vn livescore | dự đoán xổ số an giang | sở kiều truyện zing tv | hoyeah slots | 2bong sbobet | xosobamien | thiếu niên ca hành thuyết minh | 200 slots bonus | raging rhino slot machine | vui game vn | how to enable 2nd ram slot | venetian casino las vegas | sunwin casino | checker bắc ninh | winbet casino az | white rabbit slot free play | hanoi casino poker | nhạc karaoke hay | indian casinos in california | xstd90 | casino 2go | tần suất lô tô miền bắc 100 ngày | v slot wheels | dimm slots | thời tiết phú quốc 10 ngày tới | betvisa city | ice ice yeti slot | casino fun online | fruit mania slot | sieu ca h5 | xổ số miền nam ngày 27 tháng 1 năm 2022 | aladdin slot machine | best rated online casino |